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Assessment of a 3-D Boundary Layer Analysis to Predict Heat Transfer and
Flow Field in a Turbine Passage

1.0 SUMMARY

An assessment has been made of the applicability of a three dimensional
boundary layer analysis to the calculation of heat transfer, total pressure
losses, and streamline flow patterns on the surfaces of both stationary and
rotating turbine passages. In support of this effort, an analysis has been devel-
oped to calculate a general nonorthogonal surface coordinate system for arbitrary
three dimensional surfaces and also to calculate the boundary layer edge condi-
tions for compressible flow using the surface Euler equations and experimental
pressure distributions. Using available experimental data to calibrate the
method, calculations are presented for the pressure, endwall, and suction sur-
faces of a stationary cascade and for the pressure surface of a rotating turbine
blade. The results strongly indicate that the three dimensional boundary layer
analysis can give good predictions of the flow field, loss, and heat transfer on
the pressure, suction, and endwall surface of a gas turbine passage.
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2.0 INTRODUCTION

The prediction of the complete flow field in a turbine passage is an
extremely difficult task due to the complex three-dimensional flow pattern which
contains separation and attachment lines, a saddle point, and a horseshoe vortex
(Fig. 1). Whereas, in principal such a problem can be solved using full Navier-
Stokes equations, in reality methods based on a Navier-Stokes solution procedure
encounter difficulty in accurately predicting surface quantities, such as heat
transfer, due to grid limitations imposed by the speed and size of the existing
computers. On the other hand the overall problem is strongly three dimensional
and too complex to be analyzed by the current design methods based on inviscid
and/or viscous strip theories. Thus there is a strong need for local enhancing
of the current prediction techniques through inclusion of 3-D viscous effects. A
potentially simple and cost effective way to achieve this goal is to use a
prediction method based on three dimensional boundary layer (3-DBL) theory. The
major objective of this study is to assess the applicability of such a 3-DBL
approach for the prediction of heat loads, boundary layer growth, pressure
losses, and streamline skewing in critical areas of a turbine passage. For this
purpose, the three dimensional boundary layer analysis developed by Vatsa (Ref. 1
and 2) has been selected to evaluate this approach as a means for calculating the
local properties of the flow field.

In this approach zonal concepts are utilized to delineate regions of appli-
cation of 3-DBL theory - these being the endwall surface, suction surface, and
pressure surface of a turbine blade as shown by the shaded regions of Fig. l. The
zonal concept employed in this study implies that there exists a thin region near
the surface dominated by wall pressure forces, friction forces, and Coriolis
forces so that boundary layer theory is valid provided that the proper inflow
conditions and boundary layer edge conditions are specified. Although the pres-
sure surface of a stationary blade (cascade) shows only weak three dimensional
effects, the suction surface shows strong effects due the nearby passage vortex
which sweeps the flow from the endwall. Likewise the pressure surface of a rotat-
ing turbine blade shows strong three dimensional effects due to the interaction
of the strong radial pressure gradient and the Coriolis force. These strong three
dimensional effects should provide a rigorous test of the zonal application of
3-D boundary layer theory to the turbine.

This zonal approach requires three separate analyses: 1) an analysis to
construct a general non-orthogonal surface coordinate system for twisted turbine
blades, 2) an analysis to calculate the boundary layer edge conditions from a
known static pressure distribution, and 3) a 3-D boundary layer analysis which
predicts the boundary layer growth with prescribed inflow conditions. A review
of the background literature on these three problems is given below.

A coordinate system must have certain general properties if it is to be
useful for calculating three dimensional boundary layer solutions. Since the
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boundary layers lie on the turbine blade surface, a useful coordinate system
would be one formed by the intersection of three sets one parameter surfaces of
which two sets of surfaces intersect the wall boundary and the third set of
surfaces move off the wall boundary in a one parameter set. In such a coordinate
system, one surface of the third set is the boundary surface which is described
by only two parameters (coordinates). Thus as an example Howarth (Ref. 3)
derived the three dimensional boundary layer equations in a general orthogonal
coordinate system which fits this requirement. However triply orthogonal coordi-
nate systems are difficult to construct for arbitrary surfaces such as a twisted
turbine blade. Squire (Ref. 4) derived a more general set of of boundary layer
equations in a restricted nonorthogonal coordinate system. However this set of
equations has certain coordinate curvature restrictions which make it difficult
to apply in practical cases. If, however, one makes the assumption that the
boundary layers are very thin compared to the radius of curvature of the surface,
then the problem is greatly simplified. 1In this situation the third set of
surfaces is approximated by the boundary surface and is called a surface coordi-
nate system. In this surface coordinate system, two coordinates lie on the
surface and the third is normal to the surface. In addition it should be noted
that on the boundary surface, it is difficult to construct two orthogonal
families of curves to describe the surface. Thus it is desirable to have a non-
orthogonal coordinate system on the surface. The problem then reduces to the
mapping of the three dimensional boundary surface to a plane surface to be
described by two one parameter families of curves (coordinates). This mapping
function has been developed by Gordon and Thiel (Ref. 5) and the construction of
a general nonorthogonal surface coordinate system for arbitrary surfaces is
described in this report. Since turbine blades are rotating, another requirement
of the coordinate system is that it should be a rotating coordinate sysem so that
the Coriolis, or apparent forces, appear explicity in the boundary layer equa-
tions. Mager (Ref. 6) has derived the boundary layer equations in a general
orthogonal rotating coordinate system. However, as stated earlier, a nonortho-~
gonal surface coordinate system is more useful. Vatsa (Ref. 1 and 2) has derived
a set of boundary layer equations in a nonorthogonal rotating surface coordinate
system which meets all these requirements and therefore this analysis has been
used to make the assessment presented in this study.

The solution of the boundary layer equations requires specification of the
boundary layer edge conditions. These conditions are the two components of the
edge velocity, the edge total enthalpy (rothalpy), and the thermodynamic vari-
ables of state. These edge conditions can be obtained directly from experimental
data or they can be obtained from solutions of the Euler equations. Measurements
of the vector velocity components in a three dimensional flow field are extremely
difficult and costly to obtain. Difficulties are also encountered in the use of
the Euler equations for the boundary layer edge conditions since these solutions
do not produce secondary flows which are generated by viscous shear forces. An
alternative approach is to obtain the edge conditions by solving the Euler
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equations evaluated at the surface (hereafter referred to as surface Euler equa-
tions) using a known (experimental) pressure distribution. This approach fits
well within the scope of the present program since the overall objective is the
assessment of 3DBL analysis for turbine flows. Since static pressure distri-
butions over surface are relatively easy to obtain, this method is more straight-
forward and avoids the problems mentioned above. This method was outlined by
Cebeci (Ref. 7) for application to aircraft wings. Gleyzes and Cousteix (Ref. 8)
developed a similar method for incompressible flow over fusiform bodies. This
report extends this method to the prediction of the boundary layer edge veloci-
ties and thermodynamic quantities for compressible flow over general three dimen-
sional surfaces.

A detailed review of the development of three dimensional boundary layer
theory is given by Vatsa (Refs. 1 and 2). In this report only a brief outline of
the methods used by Vatsa shall be given. It has long been recognized that
turbulent boundary layer growth is governed by two length scales that have
different properties. Near the wall the turbulence is affected by the presence of
the wall and the inner length scale reflects this property of the turbulence.
Thus flow is described by the well known law of the wall. Far from the wall, the
turbulence is wakelike in behavior and an outer layer length scale describes the
turbulence properties. For two dimensional laminar boundary layers, the Levy-Lees
transformation, such as that used by Blottner (Ref. 9), attempts to capture the
growth of the boundary layer and thereby significantly simplifying the analysis.
For turbulent boundary layers, Werle and Verdon (Ref. 10) have generalized this
concept by replacing the molecular edge viscosity with an effective turbulent
viscosity. Vatsa (Ref. 1 and 2) has generalized these concepts to three dimen-
sional turbulent boundary layers and has sucessfully obtained solutions to a
number of problems.

In this report, an assessment of the applicability of a three dimensional
boundary layer analysis to the calculation of heat transfer, total pressure loss,
and streamline skewing on turbine blades is made using the 3-D boundary layer
analysis of Vatsa (Refs. 1 and 2). In support of this assessment an analysis has
been developed to construct a general nonorthogonal surface coordinate system for
arbitrary three dimensional surfaces and an analysis has also been developed to
calculate the boundary layer edge conditions using the surface Euler equations
and experimental surface static pressure distributions. Both of these analyses
are explained in detail in Section 3 - Analysis, along with a review of the 3DBL
analysis developed by Vatsa. In Section 4 - Results and Discussion, available
experimental data is used to calibrate the method with calculations presented for
the pressure, endwall, and suction surface of a gas turbine cascade described by

Graziani et. al. (Ref. 11) and for the the pressure surface of a rotating
turbine blade described by Dring and Joslyn (Refs. 12 and 13).
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3.0 ANALYSIS
3.1 Surface Coordinate System

The three dimensional boundary layer equations are written in a surface
coordinate system (x, X,, X3) in which x, and x, lie on the surface and x; is
orthogonal to (xl, X,) and hence normal to the surface. The coordinate x, is
generally in the streamwise direction and x, is generally in the crossflow
direction. If the coordinates of the surface are written in Cartesian
coordinates (y,, Y 2 y3), and the transformation

yi = vy (x5) (3.1.1)
is known, where the Jacobian
ay.
J=|—X|=#0 (3.1.2)
an

then the components of the covariant metric tensor are given by Warsi (Ref. 14)

aXi 3XJ

(3.1.3)

8ij

For the surface coordinates defined above, Eq. (3.1.3) reduces to

2 2 2
g11 ~ f@[{ 22 + 23 (3.1.4)
Bxl axl axl

ayl 8y1 . 3y2 Byz . 3y3 3y3

Bxl 3x2 Bxl axz axl sz

812 (3.1.5)

g13 = 0 (3.1.6)
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821 < 812

823 = 0
g3 = 0
g3p = 0
g3z = 1

The determant of the metric tensor is given by

lg | = 811892 - g122

and the metric scale coefficients are

hy = /&)
hy, = /8y,
hy = 1

Arc lengths along the coordinates are then determined by the relations

ds1 = hldxl
d82 = hzdx2
ds3 = dx3

(3.

(3.

(3.
(3.
(3.

(3.

(3.

(3.

(3.
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It is noted that the angle between x; and x, in nonorthogonal coordinates is
given by

cosf = g;,/(h;h,) (3.1.20)

The surface coordinates (xl, X g, x3) are the computational coordinates. The
Cartesian coordinates (y, y,, y3), which are used as a basis for the
transformation, are the physical coordinates. The transformation, Eq. (3.1.1),
defines a unique point in physical space with its corresponding point in
computational space. In order to insure uniqueness, the Jacobian Eq. (3.1.2),
must never pass through zero anywhere in the computational domain. This occurs
at the leading edge and trailing edge of a turbine blade. Therefore the
computational domain must extend from a point just downstream from the leading
edge of the blade to a point just upstream of the trailing edge of the blade. In
general (xl, X,, X3) do not represent physical distances along the surface of the
blade. The physical distances along the coordinates, which lie on the surface
of the blade, are obtained from the metric scale coefficients using Eqs. (3.1.7
through 3.1.19). A special case of surface coordinates is orthogonal coordinates
on a plain surface. For this special case we have

gy, = 1 (3.1.20)
g1, = 0 (3.1.21)
899 = 1 (3.1.22)

and, as can be seen, the physical and computational coordinates are identical.
Although it is possible to construct other simple coordinate systems by analytic
means, these coordinates are not useful for turbine blades. Since turbine blades
are twisted surfaces and their coordinates are not known except in numerical
form, special analysis is required to construct a general surface coordinate
system. This analysis is described in Section 3.10.
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3.2 Boundary Layer Equations

An ideal set of equations for this problem consists of the three dimensional
boundary layer equations in a general nonorthogonal rotating coordinate system so
the Coroilis forces appear explicitly in equations. In addition to the general-
ized geometry required for realistic turbine blades, it is noted that boundary
layers on turbine blades are laminar, tramsitiomal, and/or turbulent. Therefore
the boundary layer equations should include the Reynold's stress components so
that the appropriate turbulence models can be applied. Vatsa (Refs. 1 and 2) has
derived a set of three dimensional turbulent boundary layer equations that meet
these requirements. This derivation is long and involved and therefore will only
be outlined in this section. The first step is to transform the Navier-Stokes
equations from a stationary Cartesian coordinate system to a moving coordinate
system using the Galilian transformation,

-’
y =y * VRT (3.2.1)
2 > >
U = u + vy (3.2.2)
> > >
vg =Qxr (3.2.3)

The second step is to derive the Reynolds stress terms and include them with the
molecular viscous stress terms by taking an ensemble average over all possible
instantaneous flow conditions,

- . 1
f = 1lim

— ¢ f (3.2.4)
N + o N

where f represents any combination of dependent variables. All products of the
dependent variables are then separated into its average and fluctuating compon-
ents (correlations).

e s wdies s Saas S S O aaaw Ay O aes dhas  Saaae
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fg = f g+ f'g' (3.2.5)

The fluctuating components are then included with the molecular stress terms.

For compressible flow, the number of terms is greatly reduced by neglecting terms
with triple correlations and correlations with density fluctuations. The Navier-
Stokes equations are then transformed from the Cartesian coordinate system (yl,
Y2, ¥3) to a general nonorthogonal coordinate system (x,, X, x3) and then
reduced to a surface coordinate system using the simplified covarient metric
tensor components defined by Eqs. (3.1.4) through (3.1.12). Finally the
equations are simplified using the boundary layer assumptions. Using this
procedure Vatsa (Refs. 1 and 2) has derived the following set of equations using
the tensor relations given by Warsi (Ref. 6).

Continuity Equation

2 (e ey} ¢ 2 (L pu) v 2 (v eu\=0 G.2.6)
Ix; hy 3%, \ hy 3x3

X, Momentum Equation

u du u du du
—1 ——1 + —-—2 1 + U3
h, 8x1 h, 8x2 3x3
¢ uy B2 )E2 9%y 3hy 1 3y
141 y) -
g h, ax; 3%, h; 9x
2
oh 9h
g h h, 3x, 3xy
b og 9h g oh
¢ up, L 12 g, 2 . Bw 2
9
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h;,h g
172 12
2 ————— wau - 2 ———— Wwau
3%2 31
Ve 7e
- Wor —_—t W r —
g 9%, g Ix,
2
h,h dp h,g 9p 1 9 du —_
+ 12 —_ _ =2 F —_ — u-—-—l-—puiu'3
Pg axl pg 3x2 p 3x3 3x3
X, Momentum Equation
P ] 3
u; u, . 32 u, v ug u,
. by )21 _ M o2 My
vV — 1
g axl 3x2 hl 3xl
2
uju, 812 3h2 _ dh
+ hjhy |1+ [—= v 12 35—
g ‘ g dh 1 dg oh
+ uguy 12 12 2 12 2
812 hyhy
+ 2 Wau + 2 Wau
T T

19

(3.2.7)
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h
w2y -2 812
g
hog 3 h,2h, 3
- 2812 P 12 TP
Pg 3x; Pg 3xy
Energy Equation
hy 3x1
) ‘ at
A

1
E aX3 l BX3

o — (erZ) +
2h1 3x1

dr
axl

h, 3x2

)
22 (wlr2) +

2h2 3X2

o} -

+

- ' [
s - Puj3h,

u
3
8x3

+ U
Ix

2

3

22

- P

X3

(3.2.8)

(3.2.9)

In addition to the equations of motion, we have additional relations which are

given below.

Equation of State

Stress/Strain Heat Flux Relations

aul

T = U ——
13

8x3

du

2

T = H —
23

3X3

p=pRt

- p ullu3l

- p u2lu3l

11

(u + €)

(v + &)

(3.2.10)

(3.2.11)

(3.2.12)
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- 2

R ot u oh u P u

qr = A — -0 u3'ht' = + *h t. . -JL-(3.2.13)
8x3 Pr Prt ax3 Pr 8x3 2

where €, and €, are the nonisotropic components of the eddy viscosity, ey is
the eddy conductivity, and the turbulent Prandtl number is defined by,

Prt = Cpel/aH (3.2.14)

Total Velocity

g
2= 02 4 uy? v 2 g, L2 (3.2.15)

u.
T
hih,

where the third term is due to the nonorthogonality of the coordinates.,

Total Enthalpy

2
= YT
Rothalpy
i = hgp - vg?/2 (3.1.17)
where the rotor speed is given by
Vg = rw (3.2.18)

For stationary coordinates, w = 0 and the rothalpy is identical to the total
enthalpy. On a rotating blade, rothalpy is conserved along a streamline. On a
stationary blade, total enthalpy is conserved along a streamline. Except for
very special cases, it cannot be assumed that the rothalpy is constant over the
surface of a rotating blade.

12
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Sutherland's Viscosity Law

3/2
t trer * 198.6
t + 198.6

(3.2.19)

U= Uref t .
re

A number of comments should be made about these equations. First it is
noted that these equations are valid only for very thin boundary layers relative
to the radius of curvature of the surface. For thick boundary layers on highly
curved surfaces a more general coordinate system is required to properly account
for the divergence of the streamlines at the edge of the boundary layer.
Secondly, it is noted that certain stress terms related to surface curvature are
neglected. However, as Bradshaw (Ref. 15) has pointed out, the effects of wall
curvature on the generation and decay of turbulence are far larger than the
neglected terms. Therefore curvature effects are best treated in the turbulence
model. Likewise any effcts of Coriolis forces on the generation and decay of
turbulence can also be treated in the turbulence model. Thirdly, it is noted
that only one component of the Coriolis force appears in the boundary layer
equations. This component is normal to the wall which acts to turn the flow in
the x, or x, direction. For laminar flow, the equations given above form a
complete set of equations. For turbulent flow, a turbulence model is required to
determine the effective viscosity and conductivity of the flow. The turbulence
models used in this study are treated in Section 3.8.

3.3 Normalized Equations

The equations in Section 3.2 are normalized with respect to a reference
length (), a reference velocity (u,), and a reference density (p,). The
reference temperature is defined in terms of the reference velocity and the gas
constant . In addition, since the boundary layers are very thin, the coordinate
x, and the velocity ug are scaled by the square root of the Reynolds number.
Thus all variables are normalized as follows:
X, =x,/2

X, = xz/l (3.3.1)

X, = x3/2/R—e

U, = u1/u°°
U, = u,/u, (3.3.2)

Uy = u3/qm/§€

13
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P = p/(pwuwz) \
P = oo,
tref ~ uwz/ﬂ
T t/tref >
(3.3.3)
Hp = ht/“ooz
I = i/u¢? )
Q = wfu, l
(3.3.4)
R =r/s ‘
Pref = H (tref)
Re = puo®/ ¢ (3.3.5)
} H B Ldl%ef
Hy=h,/2 )\
! H, = hZ/IL ‘
> (3.3.6)
Gy = 81/ 87 ‘
| = [sV2* /

The resulting normalized equations are the same as those given in Seciton 3.2
with lower case letters replaced by upper case letters. The equation of state
and the total enthalpy change as follows;

P = T (3.3.7)
2
U
Hp = — T+ I (3.3.8)
y-1 2
14
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3.4 Generalized Levy - Lees Transformation

Boundary layers driven by pressure gradients undergo significant growth or
contraction which is difficult to estimate apriori. In addition, turbulent boun-
dary layers have two length scales; an inner length scale near the wall
reflecting properties of the law of the wall, and an outer length scale
reflecting wake like turbulence behavior. These properties of the turbulent
boundary layer make selection of the grid distribution extremely difficult if the
flow were solved in physical variables. For laminar two dimensional boundary
layers, the Levy-Lees transformation, as given by Blottner (Ref. 9), effectively
captures the boundary layer growth thereby significantly simplifying the
analysis. For turbulent boundary layers, Werle and Verdon (Ref. 10) have
generalized this concept by replacing the laminar edge viscosity coefficient with
an effective turbulent viscosity coefficient resulting in a turbulent version of
the Levy-Lees transformation. For three dimensional boundary layers, Blottner
(Ref. 16) has reviewed some of the transformations currently used. While these
transformations work reasonably well for laminar or turbulent flows, they are not
entirely satisfactory over the complete range of laminar, turbulent, and
transitional flows encountered on gas turbine blades. Vatsa (Ref. 17) has
developed a more suitable transformation by extension of the Levy-Lees variables
to the three dimensional boundary layer equations. This transformation reduces
to those of Blottner (Ref. 9) and Werle and Verdon (Ref. 10) for two dimensional
boundary layers. The use of these Levy-Lees variables also has the advantage,
which will be exploited in Section 3.7, of allowing the calculation of a family
of similarity solutions to be used as inflow conditions for starting the calcula-
tion.

The generalized Levy-Lees transformation uses independent variables defined

by,
Xy
£ = Of q, dX; (3.4.1)
£, = X, (3.4.2)
X
U, H 3
le™2 f b dX, (3.4.3)

15



R85-956834

where

q = peuleHllHZzue E;ef (3.
9, =4a (X4, 0) (3.
-El =1 + FE/]J (3
Eref =1+T (S/U)e (3.
| =_PYU
| R (3

The subscript (e) is used to denote the boundary layer edge.

New dependent variables are defined by

F = Ul/Ule (3
G = UZ/Uref (3
6= T/Te (3

where U_ . may be either Uje or Uy,. In these new variables a transformed
velocity is defined by integrating the continuity equation (3.2.6),

. H;H
- 182
v =v2g o Usy

2 3 <Jz G €3
_ gl H1H2 95 { gll I f F d 53}

G| q 3, | HiH,

o

Z

4.6)

4.9)
.4.10)
4.11)

4.12)

normal

2g, HyH 2 442 G| U &3
Y M e { £116) Dres [T ed 53} (3.4.13)

|G| q &, (Hy

Ule o

16
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where Usy is the wall injection velocity. The boundary layer equations in the
generalized Levy-Lees variables as derived by Vatsa (Ref. 1) are then written as

follows:

X; Momentum Equation

3 € aF 3F oF
— L —=— —| -V — -AF — - 6 —
3E4

€ref ag3 3€3 861
- Ay, F2 = Aya GF - A,G2 + AQF + AgG
12 13 7 Ag 8

t A 0t A5 =0

where the coefficients are given by

) 21 1
q H Ule
q 1 1Y)
Ay =2 gy o le
q Uje 38
A = 281 M Urer 1 e
4 U 3
q9 Hy Uy, le 9%
€12 M, 98, q, 3 Gy,
K17 2 o * "
H, 3 3, 1 9%
28 G
Ag = 1 H, 12 K,
q G|
17

(3.4.

(3.4.

(3.4.

(3.4

(3.4.

(3.4.

14)

15)

16)

.17)

.18)

19)

20)
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Ag =
T Jje| Ve
2 ;2
2¢€ H,“ H 3R
Ao o= 1 2 Q. R — o2
|G|Ule 1

18

G oH oH
HHy 3y gy
28, U H
Ag = M Tref 71 g
q Ule IG,
6y, M, G, M,
%3 ) 2% 37 H Y
) 2 2

(3.

(3.

(3.

(3.

(3.

(3.

.21)

.22)

.23)

.24)

.25)

.26)

.27)
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2
2¢, H,2 G 3R
q |G| Ulﬁ 3%

Ay, = Ag + AS
A13 = A4 + A6
2

Aj, = Ay + (A, + Ag = Ag) G, + Ay G© + Ag — Ag = Ajg ~ Ay

Ajs = Ajg + Ay

X, Momentum Equation
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26, H,2G Q 3R
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Agg = Apg ~ Ays
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Energy Equation
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Continuity Equation
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Ays = Ay + Agyg (3.4.70)

Additional relations required to complete the set of equations are given by

Equation of State

P = pT (3.4.72)
Turbulent Viscosity Relations
€ =1+ T ¢/u (3.4.73)
€, = 1 + T¢e/u (3.4.74)
- pr €
ey =1+ T =L — (3.4.75)
PrT H

where T is the intermittency factor and ¢ is the ratio of eddy viscosity coeffi-
cients if the turbulence is not isotropic. The calculations of these terms
depends on the turbulence model which is described in Section 3.8. The total
velocity is given by

2 2 2 Gy,
U, =U, +U, +2 —4£ U, U (3.4.76)
1 2 - iv2
172

and the temperature ratio is given by

2
H,. - Un“/2
0= i__.'f_z_._ (3.4.77)
Ho - Un?/2
Te Te
24
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3.5 Properties of Boundary Layer Equations

The set of equations derived in Section 3.4 consists of four coupled
partial differential equations; three of which are second order and one first
order. The properties of these equations have been formally examined by Wang
(Ref. 18). Wang's analysis shows that these equations are parabolic and there-
fore may be solved by a forward marching algorithm. However it is noted that
there exist two sets of characterstics (see Fig. 4); a set of characteristics
which consists of surfaces normal to the wall, and a set of surfaces consisting
of the stream surfaces. The set of surfaces normal to the wall are the three
dimensional equivalent to the characteristic lines normal to the wall found in
the two dimensional boundary layer equations. Thus one may expect that wall and
edge boundary conditions must be applied similar to those applied to the two
dimensional boundary layer equations. The second set of characteristc surfaces,
consisting of stream surfaces, produce the hyperbolic like properties of the
three dimensional boundary layer equations. From these surfaces, zones of
influence and zones of dependence can be determined as shown by Wang (Ref. 18).
These zones are determined by constructing a stream surface from the envelope of
streamlines passing through a line perpendicular to the surface at the point in
question as shown on Fig. 4. The zone of dependence is given by that volume of
space sweeped by all vertical lines passing through the stream surface upstream
of the line in question. Likewise the zone of influence is given by that volume
of space sweeped by all vertical lines passing through the stream surface down-
stream of the line in question. Since information is propagated along the
characteristic surfaces, the solution for the flow properties on the line in
question depends on the flow properties upstream in the zone of dependence.
Likewise the flow properties on the line in question influence the flow down-
stream in the zone of influence. Clearly in a forward marching algorithm, the
solution of the flow properties must be known in the zone of dependence in order
to calculate the flow on any vertical line. Thus the initial conditions for the
problem are all the flow properties on a surface not a stream surface. These
initial conditions are called inflow conditions because the solution can be
obtained only downstream along stream surfaces. Thus, as pointed out by Blottner
(Ref. 16), a unique solution of the three dimensional boundary layer equations
requires specification of the inflow conditions along any inflow surface and
specification of boundary conditions similar to similar to those employed for the
two dimensional boundary layer equations. The boundary conditions are treated in
Section 3.6 and the inflow conditions in Section 3.7.

3.6 Boundary Conditions
The boundary conditions are the same as those for the two dimensional

compressible boundary layer equations. The no slip condition at the wall takes
the form
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U; (Xy, Xy, 0) =0 (3.6.1)
U, Xy, X, 0) =0 (3.6.2)

With normal injection at the wall we have

Uy (X, Xy, 0) = Uy (3.6.3)

Where Uy is the surface injection velocity which has been set to zero in the
present work. For the energy equation, one may specify either the wall
temperature or the heat flux at the wall. Thus we have

T (X;, X5, 0) = Ty (3.6.4)
or
ot .
A — = -q, (3.6.5)
8X3
At the boundary layer edge, we have:
lim U; = U
X3, of 1 (3.6.7)
lim U, =10
X3 , o> 2 (3.6.8)
lim H, = H
X3 , o 1€ (3.6.9)
In the transformed variables, these boundary conditions take the form
F (g1, £5, 00 =0 (3.6.10)
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G (gy, £, 0) =0 (3.6.11)
—_ HyH,
\ (El’ €9s 0) = '/251 IT—' oy U3W (3.6.12)
Y T
H (£, £, 00 = — ¥ (3.6.13)
y-1 Hpg
or
9H Y Pr Y2E 1 aq
— &y, &y, O = - 1 i (3.6.14)
£3 Y-1 0Uje YRe Hp  LyugHpe p.8aCptees
F=G=H-=1 lim £4 » (3.6.15)

Although specification of the boundary conditions Eqs. (3.6.10) through
(3.6.15) is sufficient to solve the boundary layer equations, they are not suffi-
cient to solve the problem because the thermodynamic state of the flow is not
uniquely specified. This requires that the density and pressure be specified at
the edge of the boundary layer. Thus of a complete specification of the problem
requires the specification of Ujes Uges Py Hpg, pe at the edge of the boundary
layer in addition to the above boundary conditions. These quantities are deduced
in the present study from a solution of the surface Euler equations subject to
the imposed experimental pressure distribution. This analysis is discussed in
detail in Section 3.11.

3.7 Inflow Conditions

According to Section 3.5 , the inflow conditions as well as the boundary
conditions given in Sect. 3.6 must be specified. These inflow conditions include
Uy, Uy, P, T, p, Hy, along any inflow plane as shown on Fig. 4. These properties
may be specified as input data or constructed from analytic relations. 1In
general this data is not known. An alternative approach is to construct the
inflow conditions from certain degenerate solutions of the partial differential
equations themselves. These degenerate solutions are called similarity solutions
and are of two types. The first type, called local similarity solutions, are
obtained by reducing the partial differential equations in three independent
variables to partial differential equations in two independent variables. Thus,
as an example, by setting g€, = 0, and solving a set of partial differential
equations with £, and £, as independent variables, the inflow conditions along
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the g, = 0 plane is obtained. The second type of degenerate solutions is
obtained by reducing the partial differential equations to ordinary differential
equations. These similarity solutions may be called true similarity solutions
with one subset the similarity solutions for the two dimensional boundary layer
equations. A third special cases does exist for a boundary which is a plane of
symmetry for the flow field. 1In this last case, the plane of symmetry is a
characteristic surface and requires special treatment as will be shown below.

Local Similarity Solutions

For local similarity solutions, the inflow conditions are only a function
of 51 and 53 along a &, boundary and only a function of £, and 53 along a 51
boundary. An inspection of the differential equations in Section 3.4 indicates
that these solutions can be obtained by setting

L}

Al = 0 along a £ const. boundary

A, = 0 along a £, = const. boundary (3.7.1)
and using the local edge conditions.

True Similarity Solutions

One subset of true similarity solutions is for two dimensional
incompressible laminar flow. For this subset it is assumed that:

ds; = H;dX, (3.7.2)
S, = HyX, (3.7.3)
Gy =0 (3.7.4)
Uje = UpeoS™ (3.7.5)
Upe = O (3.7.6)
Hpo = Hpog (3.7.7)
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Note that these solutions require orthogonality of coordinates at the inflow
plane and require a power law expansion of the velocity edge conditions. With
these assumptions the differential equations of Section 3.4 , reduce to a set of
ordinary differential equations where all coefficients A, = 0 except

A 2m
=___=B
3 m+1

2m

m+l

(3.7.8)
2m

>
)
@]

[}

™

m+1

The equations of Section 3.4 reduce to the well known Falkner-Skan equations of
which two solutions are of special interest.

0 Flat Plate Solution

™
[

(3.7.9)
1 Stagnation Point Solution

>
[}

Although these true similarity solutions were not used in the present study, they
have general usefulness in a variety of real problems. As an example on a
cascade of blades with no spanwise pressure gradient, the Falkner-Skan solution
with B = 1 can start the calculation at the leading edge stagnation point.

Plane of Symmetry Solution

Since no flow crosses a plane of symmetry, a plane of symetry is a
characteristic surface and the solution of the equations are indeterminate.
Blottner (Ref. 19) has derived the special relations needed to resolve the
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indeterminancy in the equations. Across a plane of symmetry (X2 = 0) the
following conditions apply:

>

=20 (3.7.10)

P (xl, X,) =P Xy, - X,)

T (X3, X)) = T (X, - X)

(3.7.11)
U) (X X9) = U1 (X, - Xp)
U2 (xl, xz) = —U2 (Xl, - Xz)
Clearly from Eq. (3.7.11)
U2 (Xl’ 0) =0 (3.7.12)

In addition to the flow variables having symmetry, the coordinates, the metrics,
and the surface should have symmetry.

Gy =0 (3.7.13)

9H oH
1 - 772 - (3.7.14)

X, X,y

Then following the method of Blottner (Ref. 19), the solution is expanded in a
power series in X, and keeping only the first term results in,

3,
Upeg = Uy = X, (3.7.15)
8%, /o

where the subscript (o) refers to the first term of the Taylor series expansion,
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such that

(3.7.16)

Then by inspection of the equations in Section 3.4, the nonzero coefficients in
the boundary layer equations are given by

2&1 1 Ve

A1y = A3
A, = A5
£1 d aU2e 1
Ay, =2 — —— {un
16
q, X X, S
0
Ay = Ajg
_g 1 3,
A1s H, U X
q, 2 le 2
0
Alg = Aqg
Axy = A
Axg = Apy

(3.7.17)
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A41 = Agg

Ay, =1 (3.7.18)
Ay =1
Ays = Ay

Ape = Bhp + Ay

Note that the expansion of U, removes the indeterminancy in the coefficients
A16 and A18 .

3.8 Turbulence Model

The turbulence model used by Vatsa (Ref. 1) is based on the Cebeci and Smith
model (Ref. 20) developed for two dimensional boundary layers. This model may be
extended to three dimensional boundary layer flow by replacing the streamwise
velocity with the total velocity. Thus in the inner region we have

€ o] 2 3u
--) = — (&) — (3.8.1)
L u X4
where the derivative of the total velocity and the mixing length are given by
2 2 1/2
— = ) + + (3.8.2)
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-X3
L. = Kxq 1 - exp ( . ) (3.8.3)

where k is the Von Karman constant generally taken to be 0.4. The coefficient in
the damping factor is given by

1/2

A =26 DM p—) (3.8.4)

Py Py

where
o = (/o )12 (3.8.5)
u

T, = “w( T) (3.8.6)

3)(3 W

In the outer region, the eddy viscosity is given by the Clauser model in the form

€ p
— = X_R,o (3.8.7)
H 0 11

where £ is a representative length scale and y is the Clauser constant generally
taken to be 0.016. The outer layer length scale, as developed by Mellor and
Herring (Ref. 21), is taken to be

L]

ou

dxq (3.8.8)
8x3

The intermittency factor T' is used to model laminar/turbulent transitional
flow and varies between the limits 0.0 and 1.0. Since a transition model does
not exist for three dimensional boundary layers, the simplest forced transition
model for two dimensional flow is used. This model is that developed by Dhawan
and Narasimha (Ref. 22) which is given by

33



R85-956834

T (3.8.9)

"
et
I
®
L
e
I
o~
N
v
[
W
—
mn] »
|
[72]
=
[
g

where S;, and S, are the specified locations for the beginning and end of
transition. Finally we note that three dimensional turbulent boundary layers may
have nonisotropic turbulence. Thus the eddy viscosity in the cross flow
direction is multiplied by a factor ¢ which may take a value as low as 0.40.

3.9 Finite Difference Equations

The governing equations described in Section 3.4 are a set of four coupled
nonlinear partial differential equations. These equations are reduced by Vatsa
(Ref. 2) to a set of four coupled nonlinear finite difference equations using the
finite difference operators given below.

aQ | K
SE— = (QI,J - QI-l,J)/(El,I = 51’1_1) (3.9.1)
1
aQ K K
—a—g— = (QI,J - QI,J‘I)/(EZ,J - EZ,J"I) U2> 0 (3.9.2)
2
K K
= (QI‘I,J+1 = QI-I,J)/(EZ,J+1 = Ez’J) U2< 0 (3.9.3)
aQ K+1 K-1 K+l K-1
_— = (QI J QI J)/(E3 - 53 ) (3.9.4)
853 3 H
3 [ aQ ] €K + €K+1 QK+1 QK
—— € = L)
34 3Eq EI3(+1 531(-1 E3K+1- 531(
K K-1 K _ AK-1
. 2l S % B 9% (3.9.5)
- K K-1
AR S S £
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where Q represents a general solution vector (F, G, V, H) and the i, j, k sub~
scripts refer to the streamwise El’ spanwvise €y, and normal &, locations
respectively. Note that upwind difference is used on the crossflow convective
derivatives depending on the sign of the crossflow velocity so as to honor the
region of dependence criteria. When the crossflow velocity is negative, the
differencing is explicit and there is a stability criteria on the step size which
must be satisified.

R |
U, Hy X,

(3.9.6)

The resulting nonlinear difference equations are quasi-linearized to form a set
of linear matrix equations which are solved in an iterative fashion (see Vatsa,
Refs. 1 and 2). The matrix equations are solved by a block substitution algori-
thm described in detail by Vatsa (Ref. 2).

3.10 Generalized Surface Coordinates

The computational coordinates are surface coordinates that wrap around the
blade surface such that when X3 = 0.0 , any point on the surface is a function of
only X! and X2. Furthermore the computational domain shall be arbitrarily
bounded by

0.0 < x! < 1.0

(3.10.1)

0.0 <x2< 1.0

without any loss of generality and as assumed in Section 3.1, the coordinate X3
shall be normal to the surface and hence normal to both X! and X2. The coordi-
nates of the physical surface ( Y,, Y,, Yj) are generally known only in Cartesian
coordinates. Therefore we shall use the Cartesian coordinates as the basis for
the transformation. (Note subscripts and superscripts are used to denote covar-
iant and contravariant tensor components respectively.) The purpose of this
section is to find a general tensor transformation from the computational coordi-

> >
nates (X) to the physical (Cartesian) coordinates (Y) for an arbitrary surface.
It shall be noted at the outset that the Cartesian coordinates of the surface are
generally not known in analytical form but only in numerical form so that a
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general surface spline fitting algorithm is required to construct the transforma-
tion. Thus we are searching for a transformation of the form

_)
Y=Y (X) (3.10.2)
having the above properties and such that the Jacobian

3y,
J=|—2—| #0 (3.10.3)

axJ

within the computational domain. A nonorthogonal coordinate system having these

properties can always be constructed provided that the surface projects uniquely
to a plane surface. Thus if one projects all points on the surface onto the Yy =
0.0 plane such that Eq. (3.10.3) is satisfied, then uniqueness is assured. Under

>
these conditions, (see Fig. 2), the Cartesian coordinates of the surface (Y) can
be written in parametric form using only the computational coordinates x1, x2).
The transformation, Eq. (3.10.2), then takes the special form

v, = v, 1, x®) (3.10.4)
Y, = v, (x, x%) (3.10.5)
Y, = vy [v,(xb, xH), v, &, x2)) (3.10.6)

It is noted that if the transformations Eq. (3.10.4) and (3.10.5) are known,
then the equation of the surface in the physical coordinates is known in terms
of the computational coordinates by direct substitution via Eq. (3.10.6). The
task then is to determine the transformations given by Eqs. (3.10.4) and
(3.10.5). From Fig. 2, it is noted that the four boundaries projected onto the
Yy= 0.0 plane correspond to

x} = 0.0 side 1
X2 = 0.0 side &4
(3.10.7)
x! = 1.0 side 3
x2 = 1.0 side 2
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Thus, as an example, the Cartesian coordinates of the side 1 boundary can be
written in terms of only X2 as a parameter. Since these boundaries are known
only at descrete points in the form of numerical data, the side 1 boundary can
parametized with X2 as a variable using the following procedure for N boundary

points.

2y . 2 -
Yp (0, X9 =¥y [X° (D401 = V1 D46 1

Y, (0, x2) = ¥, [X2(D )40 1 = 2D gide 2 (3.10.8)

X2 (1) = (I-1)/(8-1) I = 1, N

Thus to each pair of points Y,(I), Y, (I) there corresponds a unique X2(1). A
similar proceedure is followed on the remaining three sides. With the four
boundaries written in parametric form with the appropriate X! or X2 as a
variable, any interior point is uniquely calculated using the transfinite mapping
of Gordon and Thiel (Ref. 5).

1

v; (x}x%) = a-x) v;00, x2 + xt v, (a1, x%

Loy + xzyi x! 1)

+

2
(1 -Xx9 v; (X

(1-xba-x?) y; 0, o- (1-xbx%y,(0,1) (3.10.9)

x'(1-x?) v; (1,00 - x}x? v, (1,1)

where i = 1,2. Then given any X! and X2, the Cartesian coordinates (Yl’ Y, Y3)
are determined uniquely using Eqs. (3.10.9) and Eq. (3.10.6). The covariant
metric tensor components are then determined from

Y, oY
c.. =k k

ij
Xy aK;

(3.10.10)
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(3.10.11)
Hy = 1
le| = detIGijl (3.10.12)

where the contravarient tensor notation is dropped for Eqs. (3.10.10) through
(3.10.12). We note the the covariant metric tensor components (see Eq.
(3.10.10)) require first derivatives and also that the equations of motion
requires derivatives of of the metric tensor (see Section 3.2). Therefore first
and second derivatives of the the transformation Eq. (3.10.2) are required.
Interpolation and differentiation of the boundary curves is done using a four

point Lagrangian interpolation formula. Interpolation and differentiation of Eq.

(3.10.6) is done using a surface spline fit developed by McCartin (Ref. 23) and
Spath (Ref. 24).

In addition to the metric tensor components Gij’ the boundary layer equa-
tions also require components of the coordinate rotation vector Q (see Section
3.2). In addition it is usefull to be able to resolve any vector in the
computational coordinates to the corresponding vector in the Cartesian
coordinates. Therefore the direction cosines from the computational to Cartesian
coordinates must be determined. In the present work these direction cosines are
used to resolve Cartesian components of the boundary layer edge velocities and
the wall shear force vector. A vector in Cartesian space is given by

>

SOTS E R 3
dR = e,dY" + e,dY" + ey dY (3.10.13)

where 3i is the unit Cartesian vector. However on the surface, from Eq.
(3.10.6)

P S R S S
dy’ = — 4dY* + — dY (3.10.14)
syl G

hence Eq. (3.10.13) becomes




(3.10.15)

(3.10.16)

ax1

ax2  (3.10.17)

R85-956834
R T v> a3
dR = ejdv! + eydv? + ey |— avl « ay
oyl ay?2
On the surface X3 = 0.0 and
1 1
Y 5Y
ayl = 2 ax! + 2 ax?
axl ax2
2 2
5Y Y
ay2 = 2 ax! + T gx2
ax1 ax2
Substituting Eq. (3.10.16) into Eq. (3.10.15), we have
> > oyl > 9y > [ar3 oyl a3 a2 ]
dR = e + e, + es +
] ax ! ax! av! ! av? !/
> arl s> ay? > a3 syl avd av?
+ e1 + e2 + e3 +
! ax? ax2 syl ax?2 w2 ax2/]

>
The contravariant components of dR can also be written as

>

> 1 > 2 >
dR = ajdX" + a,dX® + a, (0)

>
with a as the basis vector and noting that dx3 = 0 on the surface.

comparing terms between Eqs. (3.10.17) and (3.10.18) we have

39

(3.10.18)

Hence by
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n

ny

> oyl > a2
e + e
1 2
ax} ax1
+» oyl > ay2
e + e
1 2
ax2 ax2
> >
e aYl e, 3Y2
H X H X,
> >
ey 3Y1 ey BYZ
Hy X, Hy, X,
> >
n3 = nl X

> Y ay? oy
+ e3 +
ax!l  av2 ax!
(3.10.19)
> Y > Sl
+ e3 +
x2  ay?  ax?
-’
ey ¥y Y, ¥, aY,
+
H, Y, & ¥, X
(3.10.20)
-’
) 8Y3 BYI 3Y3 3Y2
+
H, ¥, X, ¥, X,
> > >
n,/|n; x ngf

where the distinction between covariant and contravariant vectors may be dropped.

The direction cosines are then given by

(3.10.21)

Then if U; is any vector in the X; direction in the computational coordinates and

J

40

V: is any vector in the Cartesian coordinates, then
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(3.10.22)

3.11 Surface Euler Equations

The solution of the boundary layer equations requires specification of the
edge conditions (Ule’ Uses Hras Pgs Pe) as shown in Section 3.5. These edge
conditions can be obtained directly from experimental data or they can be
obtained from solutions of the Euler equations. An alternative method is to
solve the surface Euler equations using a known surface static pressure
distribution. This method was outlined by Cebeci et al. (Ref. 7) for application
to aircraft wings. Gleyzes and Coustiex (Ref. 8) developed a similar method for
incompressible flow over fusiform bodies. This section extends these methods to
obtain a solution of the compressible surface Euler equations for application to
arbitrary three dimensional surface such as turbine blades.

The surface Euler equations can be obtained from the three dimensional boun-
dary layer equations given in Section 3.2 by taking the limit as X3 + «. Thus at
the edge of the boundary layer normal derivatives vanish and hence the momentum
and energy equations are written as follows:

Xl Momentum

U U U 3
e le 4 2o e 4 a0 2+ 8y Up, Uyt a3Uze2
(3.11.1)
C.U C.U c 9 3Cp
+ + + = a + a
1%1e 2% 2e 3 4 5
3X, 3X,
X2 Momentum
U U U au
le 2e 4 2e “2e , 5y, 24+ a,U,, U, + agl, ?
H 3xX i 3x 6-le 7 “le “2e 8" 2e
1 1 2 2
(3.11.2)
) aCp aCp
* CU1e * CsUze * C6 = 29 X, * a0 %,
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Energy
Ule aIe + U1e aIe =0
The coefficients in these equations are given by
LG (S Wy w1 %), |
2
1 ¢, \2| om; 3H,
32 = — HlHZ 1 + - 2G12 ——
lG HiH,y 39X, X
A foc), L omy Gy M,
3 2
|G| lax2 39X, Hy, 23X,
H,H 2 1
ay = - L2
2|6| P
2
o = - %6 1
> 2[¢] e
Y ‘3‘312 _, oWy Gy Oy
ag —_ [ — Hl
|G| l X, X,  H, 38X,
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2G
12
Cg = —= 03
ard
2
o - ra? HpGp, R H%H, 2R

The static pressure has been expressed in terms of the pressure coefficient
defined as

=2 (P -P) (3.11.4)

since experimental data is normally given in this form.

Inflow Conditions

The solution of these equations requires specification of the velocity com-
ponents Uy, and Uy, as well as the thermodynamic variables Pos Tgs Pe along the
inflow boundaries. In general, only the local surface static pressure coeffi-
cient and the freestream or reference stagnation conditions Pq, and T, are
known. If the local flow angle can be estimated, then the local edge conditions
can be calculated by expanding the flow isentropically from the known stagnation
conditions to the local measured static pressure.

A useful relation for this purpose is one between the pressure coefficient
and velocity. For incompressible flow this is given by the Bernoulli equatiom.
Since on a rotor the total pressure and total temperature are not constant for
the whole flow field, they are assumed constant along a surface of constant
radius. (The Bernoulli surfaces are cylindrical surfaces). Thus Pp and Tp are a
function of radius and we have

(=k$4
(=R27

(3.11.5)

I
v
+

N |o
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where

> > +> > > 2
Uy U, =U, « U, +20U, - (2xR)+ () (3.11.6)

If the vorticity is aligned with the Y, axis and the radius vector is aligned
with the Y, axis, then

>

> >
U, * (@ x R) = (QR) (Y13U1e + y23UZe) (3.11.7)

Likewise the reference conditions are given by

P2 z
PTOO=P°°+-23-° U, °* U, (3.11.8)
> > >
~ o~ 2
Uyt Up= Uy +2 (RO, U, + (9R)2 (3.11.9)

+
Combining these equations results in an explicit relation between CP and U,.

2

2
e * A, UpUge* Uy + 43U+ d2U2e =1 - Cp+ d, + d, + d5(3.11.10)

Uy

where it is noted that p= p, =1 and U, = 1 for incompressible flow. For com~
pressible flow, the same reasoning applies. Thus total pressure and total tem-
perature are constant along cylindrical surfaces and

Y
> > T
2 2 1
PT v-1 U U v
=1+ (3.11.11)
P 2 a 2
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The energy equation can be written as
> >
-1 ~ o~
ag? = a’ $o— U (3.11.12)
and combining the equations we have,
2 2
Ule + Uze + ZaoUZe + dl Ule + d2U2e = d8 + d9 (3-11.13)
where the coefficients are given by
dl = 29RY13
dy = 28Ry,
d3 = 1 - CP
| 4, = (R)Z - ()2
dg = (W%~ (w)?
T
2 P
d; = — (=X -1
y-1 P
d-a
dg = 7°T
Y-l d
1 +
2 7
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Auxiliary Relations

Three additional relations are required to complete the set of equations. These
are the equation of state

P = p, T, (3.11.14)

and the equations for total enthalpy and rothalpy

2
Y U

Hpg = — T, + Te (3.11.15)
y-1 2
sz

Ie = HTe - — (3.11.16)

Solution Algorithm

These equations are hyperbolic equations in which the characteristics are
the streamlines. Therefore these equations have the same properties as the boun-
dary layer equations discussed in Section 3.5 and are solved by specifying the
inflow conditions on the inflow boundary. These inflow conditions are given by
(Ule, Upes Hpgs Pe). Since pressure (i.e., CP) is a known input, the velocity
components U,  and U,, may be determined by specifying either U,, or the flow
angle on the inflow plane and using Eq. (3.11.10) or (3.11.13) to determine Ue-
With the velocities known, the temperature is determined from Eq.(3.11.14) and
Eq.(3.11.15). Finally the density is determined from Eq.(3.11.14).

These equations have the same properties as the boundary layer equations and
the finite difference equations are formed in the same manner using the Egs.
(3.9.1), (3.9.2) and (3.9.3). This results in a set of coupled algebraic equa-

tions.
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2 2 =
blUle + bZUle + b3UleU2e + b4U28 + bSUZe + b6 =0 (3.11.17)

2 _ 2 _
byUpe" + bgUj + bgUjUpe = bygUse + byjUpe” + byp =0 (3.11.18)

eale = eg (3.11.19)
where the coefficients are given by
U> 0.0 U< 0.0
aj; = 1/(H1AX1’I_1) aj; = l/Hlel,I—l)
ajp = 1/ (M, 5.) ajp = L/ (HyaX, 4)
NP
1 2
314 39'22? * 310'§§§
by = aj; + 3 by =a) * 3
by = a1101e,1-1 ¥ Ot by = - a5Uje,1-1,3 * ©1
by = a)p + a by = ay
b, = ajoU1e 1,3-k * C2 (by = ajy (Wye 1-1,3+1" Vle,1-1,3) * C2
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by = aj

bg = a3 + C3

b7 = ag

bg = -a;1Use 11,53 * C4

bg = a)) + 3

bjg = -a12Use,1,3-1 * C5
ag

bjp = -a;; * Cg

el+=el+e2

es = eI, 1-1,5 % e2le 1,001

where the coefficients on the left side of the page are for U

on the right are for U,, < 0.0.

iteratively in a nested loops by successive substitution.
If the flow is incompressible, the density p = 1.0.

for the density.

iteration loop solves for the velocity components and rothalpy.

known, then Eq. (3.11.17) can be solved for U;,.
Since both equations are quadradics, they are solved in

can be solved for U2e'
the following manner;

bs 83
bg = - ay3
by = ag

bg = a11Use 1-1,J+¢1V2¢,1-1,1) * Cs

bg = aj; + a;

ajy Wye 1-1,541 V2e,1-1,07 * Cs
by = ag

byjy = —ayy

el_
Hi8X) 11

- Uz

€
HyaXy 341

&y T €1
e5 = e1lg 1-1,5 * €3 (Ig 1-1,3+1 = le,1-1,5)

> 0.0 and those
Eqs. (3.11.17),(3.11.18),(3.11.19) are solved
The outer loop solves
The inner
Assume Uy, is
With U, known, Eq. (3.11.18)
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8 = (by + by Uy )%= &by (bg + by Uy, + bs¥p 2) (3.11.20)
by = (byg + by U )%= 4 by) (b, + by Upp + by U} %) (3.11.21)
and

(b, + by U, ) + ¥
Uy = - —2——2_2¢ i | by >0 (3.11.22)
le 1
2 bl

_(byg + by U; ) + Yo
e
2 by

| by, >0

=]
N
]

2
+ bg Uj, + by Ujy

b;j; =0 (3.11.23)
bio * bg Uje

where the positive roots are appropriate. When the velocity components are
known, the rothalpy is determined from Eq. (3.11.3), and the remaining roperties
from Eqs. (3.11.14),(3.11.15), and (3.11.16) so that the density is updated in
the outer iteration loop.

50



R85-956834

4.0 RESULTS AND DISCUSSION

4.1 Introductory Discussion

In this assessment of the applicability of three dimensional boundary layer
theory to predict the flow streamlines and heat transfer in a gas turbine passage
four regions of the flow field are examined. These regions are the turbine
pressure surface, the turbine endwall surface, the turbine suction surface, and
the rotor pressure surface as indicated by the shaded areas on Fig. l. The first
three cases test the analysis in a stationary coordinate system and the fourth in
a rotating coordinate system. Experimental data for pressure, endwall, and
suction surfaces were obtained by Graziani et.al. (Ref. 11) in a large gas
turbine cascade which simulated a turbine rotor. Detailed wall static pressure
distributions, three component velocity traverses, wall heat transfer, and wall
limiting stream lines were presented. Data for the rotating blade case was
obtained by Dring And Joslyn (Refs. 12 and 13). This data includes wall static
pressure distributions and wall limiting streamlines. In addition, radial
traverses of the total pressure and flow angle in the stationary reference frame
upstream of the rotor were given. This data was sufficient to calculate the
cases presented in this section.

Initial results using this three dimensional boundary layer analysis have
been presented by Vatsa (Refs. 1 and 2) wherein the boundary layer edge condi-
tions were obtained directly from the velocity traverses. In the assessment
presented in this section the boundary layer edge conditions were obtained by
integrating the surface Euler equations using the measured static pressure
distributions. The overall analytical procedure, which was the same for all
cases, is shown on the flow chart shown on Fig. 3. Spline smoothed Cartesian
coordinates of the turbine blade surface are used to calculate a coordinate
system using the geometry analysis presented in Section 3.10. With the
coordinates known, the experimental pressure distribution was used to calculate
the boundary layer edge conditions using the surface Euler analysis given in
Section 3.11. Finally, the three dimensional boundary layer equations, given in
Section 3.4, were solved. The inflow conditions were estimated using the local
similarity approximation, described in Secton 3.7, along all inflow planes that
are not characteristic surfaces. For the cascade pressure surface case, the
plane of symmetry is a characteristic surface and the inflow conditions were
estimated using the plane of symmetry analysis also described in Section 3.7.
Integral properties of the boundary layer such as displacement thickness and
momentum thickness (defined for a three dimensional boundary layer) were
calculated for all cases. These integral properties of the boundary layer were
obtained from the velocity vectors resolved in an intrinsic coordinate system
defined by the free stream flow direction and the cross flow direction (see
Appendix). In addition the two components of the wall friction coefficient
(streamwise and crossflow), heat transfer (Stanton number), and wall limiting
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streamline skew angles were calculated. The Stanton number was calculated in two
steps. In the first step, the adiabatic wall temperature was calculated by
assuming zero heat flux at the wall. In the second step, a constant heat flux
equal to that applied experimentally was used, and the wall temperature
calculated. Thus the calculation procedure used for determining the Stanton
number was the same as that used experimentally in Ref. 11.

4.2 Turbine Cascade Pressure Surface

The turbine cascade pressure surface developes a nearly two dimensional
boundary layer since the passage vortex is near the suction surface as shown
on Fig. 1. Since the spanwise static pressure distributiuon is nearly consant,
little spanwise flow or skewing is expected. For this reason, the primary purpose
of this test case is to demonstrate a calculation started along a plane of symme-
try boundary. The computational domain extends from a point just down stream
from the leading edge of the turbine blade to a point just upstream of the trail-
ing edge of the blade and spanwise from the plane of symmetry to the endwall.
The coordinates calculated for this case consists of a 40 by 40 grid with 100
grid points normal to the surface grid of which every other coordinate line is
plotted on Fig. 5. The calculated boundary layer edge conditions are shown on
Fig. 6 in the form of velocity vectors projected on to the Y3 = 0.0 plane. These
velocity vectors show, as expected, very little spanwise flow at the edge of the
boundary layer. Since the pressure distribution was not accurately known near
the leading edge, the boundary layer calculation was started with a finite bound-
ary layer thickness using the local similarity approximation by specifying a
finite distance (51 > 0) for the virtual origin (see Sect. 3.7). The boundary
layer was assumed to be completely turbulent throughout. A plot of the wall
limiting streamlines is shown in Fig. 7 in the form of the wall stress vectors
projected on to the Y3 = 0.0 plane. Again this vector plot shows very little
spanwise flow. In addition, the skew angle (the angle between the boundary layer
edge flow direction and wall streamline direction) is not more than ten degrees.
These results compare favorably with the experimental results for flow direction
and flow skewing presented by Graziani et. al. in Ref. 11.

4.3 Turbine Cascade Endwall Surface

The endwall surface boundary layer has a large cross flow produced by the
strong static pressure gradient from the pressure surface to the suction surface
as shown in Fig. 1. In addition this boundary layer has a complex pattern
produced by a separation and attachment line and a saddle point. Downstream of
this region the boundary layer is rapidly accelerated and the boundary layer
growth is more systematic. In this downstream region it may be possible to use
three dimensional boundary layer theory. The computational domain and skewed
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coordinate system used for this case is shown on Fig. 8. It consists of a 40 by
40 grid with 100 grid points normal to the surface grid which extends from a
point just downstream from the saddle point to just upstream of the trailing edge
to the suction surface of the blade passage. The boundary layer edge conditions
were calculated using the wall static pressure distribution for the thick bound-
ary layer case presented by Graziani et. al. (Ref. 1l1). Along the inflow bound-
aries for the surface Euler calculation, it was assumed that the boundary layer
edge flow was tangent to the X, coordinate line so that U,o was assumed zero.
Integration of the surface Euler equations showed that futher downstream small
negative cross flow velocities developed indicating that the boundary layer edge
flow curvature was less than the coordinate curvature. This result was consis-
tent with the velocity traverse data used by Vatsa (Refs. 1 and 2). Since this
small negative U,, velocity component produced stability problems (see Section
3.9) which could not be resolved even with a much finer grid, the calculation for
the edge velocity conditions was run assuming that Uye was zero in agreement with
the procedure of Vatsa (Ref. 2). A plot of the edge velocity vectors, which are
tangent to the X, coordinate lines, is shown on Fig. 9.

The boundary layer calculation was started with inflow conditions obtained
from local similarity solutions of the boundary layer equations. A comparison of
the calculated wall shear vectors with the measured surface streamlines is shown
on Fig. 10. As seen in this figure, the flow inclinations are in qualitative
agreement with the measured data except in the neighborhood of the saddle point.
It is also noted that the calculation presented here using the measured wall
static pressures to derive the boundary layer edge conditions shows much better
agreement for the predicted flow angle than the calculations of Vatsa (Ref. 2)
which used measured velocities for the edge conditions. This result indicates
the difficulty in determining the edge of the boundary layer in a three dimen-
sional flow field. Improved results perhaps may be obtained with better defini-
tion of the flow conditions along the upstream inflow plane. A comparison of the
measured and calculated heat transfer (Stanton number) distributions is shown in

Fig. 11 in the form of contour plots. Again qualitative agreement is obtained
except in the region of the saddle point. The case presented by Vatsa (Ref. 1)

is the same as that presented here except that the edge velocities were deter-
mined directly from three component velocity traverses whereas in the present
case the edge velocities were calculated from the wall static pressure distribu-
tion using the surface Euler equations. Of interest then is a comparison of the
predictions of heat transfer using the two methods. This is shown on Fig. 12 in
the form of crossection plots of Stanton number vs. spanwise distance a several
axial stations. Good qualitative agreement is obtained between the two methods
where the difference between the results illustrates the difficulty in obtaining
precise boundary layer edge conditions from measured data in a complex three
dimensional flow field.
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4.4 Turbine Cascade Suction Surface

The suction surface boundary layer of a gas turbine blade develops strong
three dimensional effects due to the presence of the passage vortex which sweeps
the flow up from the end wall surface. Since the boundary starts at the stagna-
tion point near the leading edge of the blade, the leading edge inflow conditions
are well established. However the flow from the end wall inflow surface produces
a separation line which divides the midspan flow from the end wall flow. This
inflow is less well established. The computational domain and coordinate system
for this case is shown on Fig. 13. It consists of a 40 by 40 grid with 100 grid
points normal to the surface grid extending from just downstream from the leading
edge of the blade to just upstream of the trailing edge of the blade and from the
end wall to the mid plane or plane of symmetry. The boundary layer edge condi-
tions were calculated assuming zero cross flow velocities at the leading edge
inflow plane. Along the endwall inflow plane, the flow angle and hence cross flow
Uy, velocity was estimated from the measured surface streamlines given by
Graziani et al. (Ref. 11). A plot of the calculated edge velocity vectors is
shown on Fig. 14. Since the cascade surface is a developable surface, the
vector plot is shown using arc length as coordinates. This vector plot clearly
shows the effect of the passage vortex on the flow at the boundary layer edge.
Since the surface Euler equations are hyperbolic equations with streamlines as
the characteristic lines, this case illustrates difficulties which may be
encountered as the flow approaches the plane of symmetry. The overall flow
direction is from the endwall to the plane of symmetry. Therefore the flow along
the plane of symmetry is a result of the calculation not an input boundary or
inflow condition. Along this plane of symmetry the cross flow velocity is zero.
Hence the static pressure must be such as to reduce the cross flow velocity to
zero at the plane of symmetry. In general without sufficient data this may be
difficult to achieve as was found in the present case near the blade trailing
edge.

The three dimensional boundary layer equations were solved using local
similarity inflow conditions as described in Section 3.7 and the local calculated
edge conditions. Since this is a transition boundary layer, the begining and end
of transition must be estimated because the present analysis lacks a transition
model for three dimensional boundary layers. The begining and end of transition
were obtained by calculating the quasi-two dimensional flow along the plane of
symmetry using the intermittancy function of Dhawan and Narashima (Ref. 22) and
comparing the results with the experimental data for heat transfer. These
transition points were then held constant across the span of the blade. A com-
parison of the calculated wall shear vectors with the measured wall limiting
streamlines is shown on Fig. 15. The flow direction at the wall is seen to be
calculated quite well and the separation line separation line dividing the lead-
ing edge flow from the end wall flow is also predicted quite well. A comparison
of the measured and calculated Stanton number distributions is shown on Fig. 16.
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Again encouraging agreement is obtained both as to magnitude and overall pattern.
The calculation, however appears to underpredict the peak heat transfer which
occurs near the endwall inflow plane. Crossection plots of the Stanton number
versus spanwise distance at different axial stations are shown on Fig. 17. These
plots show that the average level of heat transfer across the span is predicted
reasonably well, but that the high and low regions are underpredicted. Calcu-
lated and measured heat transfer along the midplane of the blade is shown on Fig.
18. This figure also shows predictions made from a two dimensional calculation
using the present three dimensional boundary layer analysis and also predictions
made by Sharma (Ref. 25). These comparisons show that although the flow is quasi
two dimensional along the plane of symmetry (i.e. U, , = 0.0), the heat transfer
is not predicted accurately. Sharma (Ref. 25), with a quasi 3-D calculation,
showed that this difference can be accounted for by the streamline convergence of
the flow toward the plane of symmetry. Thus it may be expected that the differ-
ence between the calculated 3-D heat transfer and the measured heat transfer can
in large part be accounted for by errors in the prediction of streamline conver-
gence. Vatsa (Ref. 1) obtained better predictions of the heat transfer along the
midplane using measured velocities for the edge conditions. Since no pressure
distribution data was available from the quarter-plane to the midplane for this
case, the streamline convergence of the flow towards the midplane could not be
estimated by the surface Euler analysis as accurately as otherwise might be
possible.

The three dimensional boundary layer analysis also calculates the wall fric-
tion coefficients and integral parameters such as displacement and momentum
thickness. Since a nonorthogonal coordinate system may be rather arbitrary and
not reflect the flow properties, these parameters are calculated in a locally
intrinsic coordinate system (see Appendix). This locally intrinsic coordinate
system is referenced to the boundary layer edge flow direction and an orthogonal
cross flow flow direction. All velocities and shear stresses are locally resolved
to this coordinate system. Thus two displacement thicknesses are defined. One
represents the velocity defect in the streamwise direction and the other the
velocity defect in the cross flow direction. Likewise the wall friction coeffi-
cients represents the wall shear in the streamwise and cross flow direction.
Contour plots of the streamwise component of wall friction coefficient and
displacement thickness are shown on Figs. 19 and 20.

4.5 Turbine Rotor Pressure Surface

The flow over the rotor pressure surface is strongly influenced by the rela-
tive vorticity generated by rotation of coordinates. Thus the boundary layer
flow is driven by two applied forces; the pressure gradient, and the Coriolis
force. Because of rotation rotation, the pressure surface sees a strong radial
pressure gradient which tends to drive the flow radially inward. The Coriolis
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force may tend to drive the flow radially inward or outward depending on the sign
of the blade rotation vector normal to the surface Q3. The balance of these
forces tends to drive the flow radially outward near the leading edge and axially
near the trailing edge. The computational domain and coordinate grid for this
problem is shown on Fig. 21. It consists of a 40 by 40 grid with 100 grid points
normal to the surface grid extending from just downstream from the leading edge
stagnation line to just upstream of the trailing edge and from the rotor hub to
the rotor tip. The boundary layer edge velocity vectors calculated from the sur-
face Euler equations are shown on Fig. 22, It was found that no solution of the
surface Euler equations exist along the leading edge inflow boundary for the
crossflow velocity Uy, = 0.0. Therefore on both the leading edge and hub inflow
boundaries, the crossflow velocity was estimated from the surface streamlines
given by Dring and Joslyn (Refs. 12 and 13). The edge velocities show the
behavior of the suction surface flow observed by Dring and Joslyn.

The boundary layer equations were started with local similarity inflow
conditions. A comparison of the calculated wall stress vectors with the wall
streamlines obtained using the ammonia-ozalid process is shown on Fig. 23. The
calculated vectors clearly show the general overall flow pattern quite well.
Calculated flow angles are compared with the flow angles measured from the ozalid
paper on Fig. 24. Two curves are shown. The first curve (solid line) is the
calculated flow angle at each point along the calculated streamline. The second
curve (dotted line) is the calculated flow angle along the midplane. A compari-
son of the edge velocity vectors with the wall vectors indicates that the flow
skewing is up to about ten degrees. These figures clearly show that the flow
streamlines are predicted fairly accurately and that two dimensional boundary
layer theory applied in a strip fashion would not be adequate to calculate the
heat transfer on the turbine blade. Calculated Stanton number distributions for
a fully turbulent boundary layer are shown on Fig. 25. This shows higher heat
transfer rates near the hub and trailing edge of the rotor blade.
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5.0 CONCLUDING REMARKS

An assessment has been made of the applicability of a three dimensional
boundary layer analysis for the calculation of heat transfer, total pressure
loss, and streamline flow patterns on the surfaces of both stationary and
rotating turbine passages. On the pressure and suction surface of a turbine cas-
cade, the 3-D boundary layer analysis along with the coordinate generator and
surface Euler analysis produce predictions of heat transfer and surface stream-—
line patterns which are in reasonably good agreement with available experimental
data. Experimental data for wall friction coefficient was not availble to
evaluate the prediction of loss; however, because of the close relation between
wall friction and heat transfer one may also expect good predictions of loss.
Assessment of the 3-D boundary layer analysis for the predictions of the flow on
a turbine endwall is complicated by the uncertainty in the inflow conditions
downstream from the separation and attachment lines. However the results
obtained in this study are very encouraging as they indicate that the 3-D bound-
ary layer analysis is applicable to the endwall surface as well. On the pressure
surface of a rotating turbine blade, prediction of the flow streamlines and flow
skewing agree reasonably well with the available data. Evaluation of the analy-
sis for the prediction of heat transfer and loss on a rotating turbine blade must
await the collection of experimental data.

The results obtained in this investigation reinforce earlier conclusions
that two dimensional boundary layer theory applied in a strip fashion can not
predict heat transfer and loss because of the strong three dimensional flow
effects on a turbine blade. On the suction surface of a blade, these three
dimensional effects are produced by the passage vortex and on the pressure
surface of a rotating blade these effects are produced by the radial pressure
gradient and Coriolis force. In view of the current state of Navier-Stokes analy-
sis, three dimensional boundary layer theory could provide a useful tool for
local enhancement of of the flow field for the prediction of heat transfer, loss,
and flow streamline pattern on turbine blade surfaces. The results of this study
strongly indicate that the local details of the flow field on the turbine blade
surface can be accurately calculated using a two step procedure. First the over-
all flow field can be calculated on a coarse grid using a Navier-Stokes or
parabolized Navier-Stokes analysis. Second the three dimensional boundary layer
analysis can be used for local enhancement to provide details of the flow field
on a much finer grid.
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8.0 LIST OF SYMBOLS

Coefficients of boundary edge equationms
Coefficients of boundary layer equations
Specific heats

Wall friction coefficient

Pressure coefficient

Unit vectors Cartesian coordinates

X, velocity ratio (uy/uy )
Covarient metric tensor components (gij/lz)
X velocity ratio (uy/u_g¢)
Metric scale coefficients (h;/%)
Static enthalpy (h/ug)
Total enthalpy (hT/ug)
Total enthalpy ratio (hp/hypg)
Rothalpy (i/ul)

Thermal conductivity

Reference length

Levy - Lees parameter (pu/p 1)
Mach number

Unit vectors surface coordinates

Static pressure (p/pmui)
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st PT

Pr, Prt

Uref Uref

vps Vg
1 M1

Yia Yi

Total pressure

Prandtl number laminar/turbulent
Levy - Lees length scale parameter
Heat flux

Radius

Reynolds number

Gas constant

Arc length distance

Stanton number

Static temperature

Velocity components surface coor.
Axial velocity

Radial velocity

Tangential velocity

X2 reference velocity Uje OT Ug,
Velocity components Cartesian coor.
X4 reduced velocity

Rotor velocity

Surface coordinates

Cartesian coordinates

Relative inlet flow angle

Ratio of specific heats
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(PT/me£)

(cp u/k)

(r/ %)

(Peugl/Y  f)

(Si/z)

(t/treg)
(u;/uw)
(u,/ue)
(u /ue)
(ug/ve)
(u,, ¢/um)

(v;/ug)

(VB/UQ)
(x4/)

(yi/l)
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Yij
-1
Yij

J

o |

o |

ref

Href

ij

w, O

Subscripts

Direction cosine tensor components

Inverse tensor components

Displacement thickness

Eddy viscosity

Viscosity ratio turbulent/laminar

Reference viscosity ratio

Momentum thickness

Static temperature ratio (t/t_o¢)
Molecular viscosity

Reference molecular viscosity u(tref)
Levy - Lees transformed coordinates

Density (p/p,)
Time

Stress components

Rotor speed (we/u,)

Cross flow direction

Edge conditions

Hub

rotor inlet conditions
Streamwise direction

Tip

Total or stagnation conditions

Free stream or reference conditions
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Superscripts

~ Absolute rotor reference frame
Tensor Notation

i,j,k Subscripts covarient tensor components

i, i,k Superscripts contravarient tensor components
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10.0 APPENDIX - BOUNDARY LAYER PARAMETERS

The boundary layer parameters such as momentum thickness, displacement
thickness, and wall shear are calculated in an intrinsic coordinate system (see
Ref. 26). This intrinsic coordinate system is oriented with respect to the
boundary layer edge flow direction Ue and the crossflow direction defined as the
U3 X Ue direction. These directions are labeled the streamwise and crossflow
direction respectively. The resolution of vectors in this coordinate system is
given in Ref. 26 and the following boundary layer parameters are defined.

Displacement Thickness

pU
§,/8 = [ [ 1-—21] dy,g (A.1)
Pele
* pU
6c/0 = [ [ —5=1 dv,4 (A.2)
U
e e
Momentum Thickness
pU U
0/ = [ —E-[1--2] dy, (A.3)
PeVe Ue
pU_ U
0../2 = =] —2% =€ dv, (A.4)
pUC Ue
Wall Friction Coefficient
= 2
Cee = 2 Tgu/(pUe”) (A.5)
= 2
Ceo = 2 Ty (0eUe2) (4.6)
Stanton Number
S, = Su (A.7)
Pe Uu €, (t, - t,)
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